skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ligon, Walter B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivation: As the size of high-throughput DNA sequence datasets continues to grow, the cost of transferring and storing the datasets may prevent their processing in all but the largest data centers or commercial cloud providers. To lower this cost, it should be possible to process only a subset of the original data while still preserving the biological information of interest. Results: Using 4 high-throughput DNA sequence datasets of differing sequencing depth from 2 species as use cases, we demonstrate the effect of processing partial datasets on the number of detected RNA transcripts using an RNA-Seq workflow. We used transcript detection to decide on a cutoff point. We then physically transferred the minimal partial dataset and compared with the transfer of the full dataset, which showed a reduction of approximately 25% in the total transfer time. These results suggest that as sequencing datasets get larger, one way to speed up analysis is to simply transfer the minimal amount of data that still sufficiently detects biological signal. Availability: All results were generated using public datasets from NCBI and publicly available open source software. 
    more » « less